SoilWorks Tutorials

I. 边坡例题

无加固边坡稳定分析

土钉加固边坡稳定分析

01. 学习目标	3
02. 概要	4
 边坡加固分析概要 边坡稳定分析方法 边坡加固施工法 土钉 加固施工法 模型构成 	
03. 项目设置及特性定义	9
 开挖SoilWorks /导入文件 定义地基特性 定义结构特性 	
04. 建模	12
 生成面及赋予特性 生成网格 设定边界条件(设定水位线) 设定边界条件 (地面支承) 赋予LEM 特性 设定边界条件设定 (设定圆弧破坏面) 	
05. 分析	19
 1. 设定分析工况 2. 定义设计选项 3. 分析及生成计算书 	
06. 分析及输出计算书	24
 分析结果(LEM) 分析结果(SRM) 生成结果(SAM) 生成计算书 	
07. 深化学习的指南	28

本例题里,通过对用土钉(土钉)加固的切边坡稳定分析,理解SoilWorks程序操作流程并正确 使用及熟悉基本功能。理解边坡 LEM(极限平衡法),SRM(强度折减系数法),SAM(应力极限平衡法) 的基本流程,利用SoilWorks进行分析,并熟练掌握运行结果的分析及计算书的生成。

在边坡 LEM, SRM, SAM 分析中, SoilWorks的操作流程如下;

[在SoilWorks中的操作流程]

Tutorials

1. 边坡加固分析概要

在实际工程中,对于地基设计的边坡加固分析时,常采用极限平衡法(LEM)的理论与工程实际经验相结合。极限平衡法(LEM)虽然能够计算边坡内可能破坏面的全部安全系数,但它却不能预测整个边坡的应力分布及位移变化的大小。因此,当需要得到边坡稳定的应力、应变及位移变化时,极限平衡法就表现出它的不足。在实际工程中,为了得到边坡的应力、应变,通过SRM(Strength Reduction Method)或SAM(Stress Analysis Method)进行边坡稳定的数值分析越来越被工程师们重视。

2. 边坡稳定分析方法

1) 极限平衡法 (LEM, Limit Equilibrium Method)

极限平衡法的目的是对滑动面可能发生破坏的土体进行稳定性分析,为了简化计算,假定一定 条件后,利用简单的静力学理论求解。

在极限平衡法中,在设计中计算安全系数最常用的是Bishop方法,虽然按静力学求解假定的破坏面的稳定性不能成为正确的解,但求出的安全系数几乎接近正确值。根据Bishop法的基本原理如下图,Bishop安全系数的计算式如下;

torials

02. 概要

2) 强度折减系数法 (SRM, Strength Reduction Method)

强度折减系数法是根据安全系数,是在现有应力状态下计算安全系数的方法,对土体的抗剪强 度不断地进行折减,在减少强度的同时,反复进行变形系数分析一直到边坡破坏状态为止,从而决 定临界破坏面。但是,根据破坏变形系数基准的假定不同,临界截面的形状也发生变化,反复的有 限元分析需要相当的计算时间。

3) 应力极限平衡法 (SAM, Stress Analysis Method)

应力极限平衡法是在通过对边坡进行应力有限元分析后,计算以应力分析结果为界面在极限平衡法中使用的稳定性评估单元的假想滑动面的边坡安全系数,计算最小安全系数的临界截面。

3. 边坡加固施工法

为防止边坡崩溃的施工法,如按防止功能类别,分为安全系数维护法和安全系数增加法。

区分	施工法特点
安全系数维护法	 ·从引起边坡发生崩溃的直接性因素来保护边坡的消极性对策方法。 ·根据与降雨,融雪等相关的水的影响,防止减少边坡安全系数的方法。
安全系数增加法	 ・为改善边坡崩溃潜在脆弱性的积极的对策方法 ・在判断为不安全边坡的安全系数中,打入加强材料或与墙类似的阻抗体,使之增加抵抗力的施工方法。

1) 安全系数维护法 (抑制施工)

区分	施工法特点
排水施工	排水施工类别为地表水排水施工和地下水排水施工: • 地表水排水施工 - 为不让因降雨产生的表面水渗透到地下的方法 - 防止渗透法、水路施工、暗沟施工等 • 地下水排水施工 - 把渗透到地下的水排除到边坡外的方法 - 集水井施工,排水隧道等
砌块施工	 ・按边坡的地表面暴露在空气中的状态原样搁置的情况下,根据风、降雨及地下水等侵蚀最终是转变成崩溃 ・因此是边坡按砌块或网格模样砌块等覆盖,预防边坡侵蚀的施工法
植被施工	 ・让边坡被植被覆盖,防止基于风、雨水侵蚀的方法。 ・植被施工作为倾斜面保护施工,是最普遍使用的。作为至今为止使用频率还是很高的施工方法,最大的理由是比较经济和在倾斜面作为保护施工有效果。
表层安全施工	 ・把注入材料注入到地基,提高不稳定土质的稳定性,挡住地下水或渗透水的流入,阻挡使边坡地基 不稳定的方法。 ・注入施工法中使用的注入材料有很多种,但主要按水泥系列(悬浮液薄浆),水泥药液系列(颗粒溶液 薄浆),药液系列(溶液薄浆)来大分类。

2) 安全系数增加法 (硬施工)

区分	施工法特点
倾斜放宽施工法	 ・能够充分利用倾斜面附近土地的情况下,使倾斜面平缓或者把预想滑动的土块清除,确保稳定性的施工方法。 ・一般滑动面上的在中央1/3的上部的土或者岩石对引起滑动造成影响,在它下部的土则抵抗滑动, 清除上部滑动土块的施工方法称作培土施工。 ・培土施工根据对边坡需要培土的规模来类别全面培土和部分培土。 ・根据边坡规模培土施工法可能会发生大的工程费,所以对所适用的施工法需要彻底的事前调查。
补强材料注入施工法	 ・在要滑动的倾斜面内部注入补强材料增加滑动抵抗力的施工法。 ・代表性的施工法有锚杆(Rock bolt)施工法、土钉(土钉)施工法、永久锚固施工法、FRP施工法、硬桩施工法、土类结构施工法等。
土类结构施工法	 ・本施工法是边坡上部的占地确保困难的情况下或者切削成稳定坡度以上后,为了确保边坡的稳定性 而设计的结构施工法。 ・土类结构施工法的种类 ・边坡高度低的切削坡面:自然砌石、重力式挡土墙、反重力式挡土墙,L形挡土墙 ・边坡高度高的切削坡面:锚固和并行的重力式挡土墙、反重力式挡墙、L形挡土墙
提高抗剪强度的 施工方法	 ・根据水泥、膨润土、水玻璃系列药液(LW, SGR, DDS, LAG, MT施工法等)等注入地中或高压喷射(C CP, JSP, JGP, Column Jet施工法)将形成的地基强化阻止边坡滑动的方法。 ・虽然是高价施工费,但作为对象地基的适用范围宽和可靠的施工法,特别作为安全事故对策施工法被大量适用。

itorials

4. 土钉 加固施工法

土钉 施工法,相当于前面说明的加固施工法分类上的安全系数增加法(硬施工法)中补强材料注 入施工法。一般是在设计基准上按标准梯度和梯度放宽施工法不能确保稳定性的情况下,使用最多 的加固施工法。

土钉 施工法作为边坡加固及对开挖面弹性的地基加固施工法,补强材料按没有预加应力的细密的 间距注入到原地基,增强原地基整个自身的抗剪强度,尽可能抑制地基位移的Top Down式加固施 工法,它的特点如下;

- •作为原地基加固施工法 Nail 1个负担的安全度低,所以对整个稳定涉及的影响相对性的少。
- •施工方法简单施工时噪音、震动少,是接近城市中心施工的最优选择。
- •适用于永久边坡时必需有Nail的防止腐蚀对策。
- •为了边坡内排水处理,必须要求设置水发施工。

土钉 施工法不适用平面边坡破坏,对较低的滑动破坏预想的土层面,采用边坡保护、防土架设、 永久墙体等加固方法更好,此外也可用于保护沙土或保护风化严重的切边坡。

土钉 施工法按下面三大种分类;

类别	施工法概要	优	点	缺 点		
重力式Soil Nail 施工法	•穿孔洞内 注入Nail 体按无压灌浆使Nail体 和加固的土块能够一 体化。	 Nail 每根施工费低廉 根据多年的设计及施工经验积累的专有技术 主材料求得容易、施工简单 		 Nail 每根施工费低廉 根据多年的设计及施工经验积累的专有技术 主材料求得容易、施工简单 		• 松散的地基或者破碎及纹理严重的 岩石层等,为了确保灌浆的质量, 需要 2~3回的反复注入灌浆施工。
加压式 Soil Nail施工法 (永久 Packer Ty pe)	• Nail的固定利用永 久包装机密封后,按 加压式灌浆使Nail体和 加固的土块一体化。	• 按松散的地基、 破碎带区间的加压 式灌浆方式,灌浆 质量容易管理→		 •牢固或紧密地基中的加压效果不好 •不能回收,灌浆养护时,若材料 分离出现空洞时,再施工就很困难。 •强度相对较小。 •需要使用包装材料,每根施工费 高 		
加压+重力式 Soi I Nail施工法 (可 以再次使用Pack er Type)	• 清除Nail的固定, 利用设置容易的2种橡 胶包装机密封后按加 压式灌浆,使Nail体和 加固的土块一体化。	灌浆有效粒度增加 引发的抵抗力增大 → Nail 每根分担 面积增大	•把1次加压式灌浆养 生时发生的空洞按2 次重力式灌浆补充, 确保灌浆的质量。	 • 牢固或稠密地基中由于有效粒度增加效果不明显。 • 与重力式相比灌浆工程较复杂 • 与重力式相比每根工程费高 		

Tutorial

s oilWorks

5. 模型构成

按照无加固分析边坡时出现NG情况下,可以对其进行放宽梯度和加固边坡,本例题中,采用边坡加固中最常用的土钉施工法,利用有限元分析法(SRM,SAM),对加固后的边坡在雨季时进行稳定性计算。例题中所采用的模型及相关的地基属性如下:

2) 材料特性

● 地基特性

序号	名 称	模型类型	弹性模量 (kN/m²)	天然容重 (kN/m ³)	饱和容重 (kN/m ³)	泊松比	粘聚力 (kN/m²)	内摩擦角 (degree)
1	风化土	摩尔-库伦	36,500	18.5	19.5	0.33	17.5	31
2	风化岩	摩尔-库伦	150,000	21	22	0.30	50	33
3	软 岩	摩尔-库伦	1,850,000	24	25	0.28	180	35.5
4	风化土	摩尔-库伦 (LEM)	-	18.5	-	-	17.5	31
5	风化岩	摩尔-库伦 (LEM)	-	21	-	-	50	33
6	软 岩	摩尔-库伦 (LEM)	_	24	-	-	180	35.5

● 结构特性

序号	名称	模型	· 类型 初始:	旷散宽度(m)	初期扩散角 (deg)	抗张强度 (kN)	等价半径 (m)	钢筋截面/材质
1	土钉 N (LEM)	ail Nail)	(LEM)	1	10	115	1	-
序号	名称	模型类型	截面面积(m²)	弹性模量 (kN/m ²⁾	容重 (kN/m ³)	泊松比	热膨胀系数	屈服强度
2	土钉 Nail	植入式桁架	0.0006424	200000000	76.98	0.3	1.2E-5	35000

ltorial

1. 开始SoilWorks 开始/导入文件

导入为了分析预先制作成的文件

lutorials s

[SoilWorks 开始及导入]

Slope

2. 定义地基特性定义

在主菜单中 , 选择 *模型 > 材料属性 > 地基特性 🛛 📝* (命令框 : gm) 🖗

●在命令框窗口中直接输入命令语,可以调出菜单。

♀在SoilWorks中,可以把 适用于工程的地基特性数 据库化,方便使用。地基 特性可以通过设置文件夹 内 Soil Works/Dbase 里 的 gdb文件编辑来制作。

点击数据库 数据库 … 按钮♀

- 2. 在地基常数数据库选择栏中,地基常数数据按 '1.1SCHIST#1' 设定。♀
- 3. 在土质类型的选择项中勾选'风化土-软岩'
- 4. 在模型类型中选择'摩尔-库伦'
- 5. 点击 分配 按钮
- 为了LEM(Limit Equilibrium Method,极限平衡分析法)分析,填加不同分析种类的模型的地基材料。

6.将上面生成的风化土、风化岩、软岩模型变为 '摩尔-库伦(LEM)' 后填加。

* P4PLL	模型类型	1 名称 风化工	-					
2 2 	61.46.45	(HEIST G			-Education			
4 风化土		100	Defree 1		20201122 201			141-47
5 凤化岩	5甲注情里	(E)	36500 1	dv/m~2	5甲住根里方	(里	0	KN/m^2
0 112	2月216 (1)	<i>i</i>)	15.05		相張/J支H 其语宣度	•	0	KN/m··2
	福度州的 視容垂()	(0)	18.5	N/m^3	tab-là-ranisz 註:詳論(ω	31	[dea]
	油 和容重	(Ysat)	19.5	N/m^3	右拉品	r /	2000	kN/m^2
	粘聚力()	c)	17.5	N/m^2				A
	内摩擂角	(Φ)	31 [deg]				
	静止土压	力系数(K0)	1					
	排水条件		排水 🕌					
			1					
			-					
	□ 定X不	虚水园	_	_		添加 能改	0 0 0 0 0 8 8	〕 关证
1 <u>數据库</u> 封 数 影 库 首数数 揭 库	2 1. 1Schi st#1	透水园	_	5		添加 修改)	美研 美研
1 数据库 對数据库 言数数据库 上类型	2 1.1Schist#1 弹性模量 (kk/m^2)	透水层 湿容重 (kV/m^3)	他和容i (kN/m^:	下 王 3) 済		添加 総改 全 私聚力 (kN/m ²)	· ### 选· · · · · · · · · · · · · · · · · · ·) 关闭 解除全选 I 送
	2 1.1Schist#1 <u> 第性模量</u> (kN/m^2) 13000	遗水压 <mark>建容重</mark> (kN/m^3) 18	他和容 到 (kN/m^:	重 3) 済 19	自松比 0.33	☆加 給改 金 金 ★ </td <td>#### 选 内摩擦角 ([deg])</td> <td>¥ii 解除全述 1 送 27 〔</td>	#### 选 内摩擦角 ([deg])	¥ii 解除全述 1 送 27 〔
計算の記述 計算の記述 計算の記述 計算の記述 計算の記述 計算の記述 計算の記述 に 本述 本述 本述 本述 本述 本述 本述 本述 本述 本述	2) 1.15chist#1 学性校童 (kV/m ²) 13000 8000	<mark>邊容重</mark> (kN/m^3) 18 17	他和容 到 (kN/m^:	E 3)	自松比 0.33 0.35	▲ # ▲ # ★ </td <td>· ### 选 · · · · · · · · · · · · · · · · · · ·</td> <td>¥ii 解除全进 27 〔 20 〔</td>	· ### 选 · · · · · · · · · · · · · · · · · · ·	¥ii 解除全进 27 〔 20 〔
計数数編集 記録数数編集 上andfil Layer Weathered Soll	2) 1.15chist#1 #4548 (kN/m^2) 13000 8000 38500	<mark>邊容重</mark> (kN/m^3) 18 17 18.5	他和容 (kN/m个	E 3) 3) 19 18	自松比 0.33 0.35 0.33	☆加 给改 金融 金 ★<	· · · · · · · · · · · · · · · · · · ·	¥Ⅲ 解除全进 27 27 20 31
計算数数序 対数数序 主类型 Landfil Layer Aluvial Layer Veathered Rod Weathered Rod	2) 1.15chist#1 #1448 (kV/m^2) (kV/m^2) 8000 30500 4.150000	送水运 (kN/m ⁻³) 18 17 185 21	他和容 (kN/m^:	E 3 19 18 19 18 19 22	自松比 0.33 0.35 0.33 0.33	添加 総改 金融 金融 金融 ★ 私祭力 (kN/m ²) 0 15: 17:5 50 50	· #### 选 · · · · · · · · · · · · · · · · · · ·	美研 新除全送 ま シ ジ
教授 教授 教授 教授 教授 教授 教授 教	2) 1.1Schist#1 学性极量 (kV/m^2) 13000 8000 8000 85000 150000 1850000	28容重 (kN/m ³) 18 17 18.5 21 24	他和容 (kN/m个)	E 3 19 18 19 22 25	自松比 0.33 0.35 0.33 0.33 0.33 0.28	☆m	勝線 选 ([deg]) 3	★iii 解除全送 27 〔 20 〔 31 〔 33 〕

[定义地基特性]

Itorials

3. 定义结构特性

在主菜单中选择 *模型> 材料特性 > 结构特性 🛁* (命令框:sp)

- 1. 名称输入栏输入 'Nail(LEM)'
- 2. 构件类型栏中选择 '土钉/桩 (LEM)'
- 3. 在厚度方向布置间距输入栏输入 '2'
- 4. 在初始初始扩散宽度输入栏输入 '1'
- 5. 在初始扩散角输入栏输入 '10'
- 6. 在抗拉力输入栏输入 '**115**'
- 7. 在等效半径输入栏输入 '1'
- 8. 确认未勾选"抗剪力沿长度方向变化"
- 9. 抗剪力输入栏输入 '0'
- 10. 点击添加 添加 按钮
- 11. 名称栏输入 'Nail'
- 12. 构件种类选择栏选择 '植入式桁架'
- 13. 水平间距输入栏输入 '2'
- 14. 截面信息中截面的面积输入栏输入 '0.0006424'
- 15. 材料信息中钢筋的弹性模量输入栏输入 '20000000'
- 16. 材料信息中钢筋的泊松比输入栏输入 '76.98'
- 17. 材料信息中钢筋的容重输入栏输入 '0.3'
- 18. 材料信息中钢筋的热膨胀系数输入栏输入 '1.2E-5'
- 19. 材料信息中钢筋的屈服强度输入栏输入 '350000'
- 20. 点击添加 添加 按钮
- 21. 点击关闭 关闭 按钮

utorials

Slope

♀在SoilWorks中利用 智能 曲面功能自动探索闭合的 板块后生成面。这时Nail 为了生成一个独立的网格 组,在生成面之前预先赋 予结构特性(物理性质)。 不按一个单元生成的情况 下在整个板块生成面,生 成的面利用拖拽可以在制 作网格前提前赋予地基特 性。

◆本例题对极限平衡法和有限元法同时执行分析。首先对面赋予FEM特性后生成网格然后重新对面赋予LEM特性,就会把面中LEM特性、单元中的FEM特性可以分割分担。

1. 生成面及赋予特性

为了生成一个独立的土钉(Nail)网格组,在面生成之前对有关土钉(Nail)的线赋予特性信息。 ♀ 除自动生成线的特性外,还需要自动生成整个面,从而对SoilNail生成网格。

- 1. 在作业框中选择5个 SoilNail 线 (LEM分析中要把Nail按1个单元建模)
- 2. 作业目录树 > 结构特性 > 'Nail[Embedd Truss]' 用作业框 拖拽
- 3. 主菜单中点击 *几何形状 > 生成> 面自动生成* 🔠 😡 (命令框:ss)
- 4. 作业框中选择 '风化土' 板块
- 5. 作业目录树 > 材料特性 > 地基特性 > 风化土用作业框 拖拽♀
- 6. 重复4~5项过程,在'风化岩','软岩'板块赋予特性

被赋予面或曲线的特性在作业目录树中可以确认

Slope

Slope

2. 制作网格

利用被赋予了特性的面生成网格

₩在SoilWorks中根据网格 稠密度提供非常稠密 / 稠 密 / 稀疏的网格。

₩执行有限元(强度减少法) 分析时,为了体现与实际 接近的破坏形状更精确的 验算结果,生成高次单元。 网格的大小和形状对结果 有很大的影响。考虑效率 尽可能的生成稠密的和形 状好的网格才能计算更精 确的最小安全系数。

在主菜单里 , 选择*模型 > 网格 > 智能网格 [😭 🞧 (命令框:sm)*

- 在网格稠密度里选择 '非常稠密' 1.
 - 勾选 **'生成高阶单元','生成三角形单元'** ♀ 2.
- 3. 确认勾选'独立注册各区域的单元网格组'
- 4. 点击确认 确认 按钮
- 确认己生成的网格 5.
- 重新定义网格的名称 6.

[网格名称定义]

2. 生成网格

有限元分析中单元网格的形状和大小对结果有很大影响。利用智能网格功能分割自动生成的Nail单元。

主菜单中形状 模型 > 单元> 建立单元 🚺 😡

- 1. 隐藏下面网格组中自动生成的 '(Embedded Truss) Nail' 网格
- 2. 网格组名称中输入 'Nail'
- 3. 单元类型按选择'植入式桁架单元'
- 4. 结构特性选择'2 Nail'
- 5. 连接Nail的开始点和终点,生成各自的土钉单元 😡
- 6. 确认在作业目录树中生成的总计5个的土钉I单元。

utorials

[Nail 网格组生成]

♀利用激活的捕捉在CAD中 做线图连接两个节点可以 生成一个单元。

♀用单元生成功能可以生成 连接两个节点的结构单元。

3. 设定边界条件设定 (设定水位线)

设定雨季水位线

主菜单中选择 荷载 / 边界条件> 函数> 水位线 🗾 (命令框:wl)

- 1. 函数名称中输入 '水位'。
- 2. 选择如图的7条线。
- 3. 点击确认 **确**认 按钮。

2132 - C 40	
线 选择 [7]

[水位线设定]

Tutorials

ailWork

4. 设定边界条件 (地面支承)

为运行SRM/SAM 分析设定地基边界条件

主菜单中选择 荷载 / 边界条件 > 边界 > 智能支承 🚉 (命令框:as)

- 1. 边界组中输入 'Ground Support'
- 2. 网格组选择 > '考虑所有单元网格组'
- 3. 点击确认 确认 按钮

[地基边界条件设定]

utorials

5. 赋予LEM 特性

04. 建模

为了同时执行极限平衡分析法和有限元分析法,面/线中赋予LEM特性、生成的单元中赋予有限 元特性。一个面/线中只能赋予一个特性信息,所以赋予FEM特性生成网格后,在面和线中各自赋 予LEM特性信息。

- 1. 隐藏生成的网格后,在作业框中选择'风化土'区域。
- 2. 作业目录树 > 材料特性 > 地基特性 > 风化土(LEM)用作业框拖拽到'风化土'
- 3. 重复1~2过程 '风化岩','软岩' 区域赋予 LEM 特性
- 4. 作业框中选择 SoilNail 线5个
- 5. 作业目录树 > 材料特性 > 结构特性 > Nail(LEM) 用作业框拖拽到 SoilWorks线 ♀
- 6. 确认分配的特性

[输入LEM 特性信息]

Tutorials

♀考虑到边坡坡度、地基 材质等画了预想破坏面的 范围。网格成为圆的中心 点按指定的个数生成假想 破坏面,计算对各破坏面 的安全系数。制图成使近 似于最小安全系数破坏面 的中心点为网格中央位置。

6. 设定边界条件 (设定圆弧破坏面)

设定为了进行 LEM和 SAM分析的圆弧破坏面。设定假定的圆弧破坏面必须经过的通过点,在Nail 加固区域可以判断增加的安全系数。

8. 点击确认 确认 按钮♀

♀执行分析后,越接近最小 安全系数输出的圆弧破坏 面的中心点画成的网格中 央,越是有可靠度的结果。 执行分析后破坏面的中心 点在网格外围形成的情况 下,要重新设定使能够在 网格的中心位置。

Slope

[圆弧破坏面设定]

1. 设定分析工况

分别设定LEM, SRM, SAM分析的分析工况

主菜单中选择 分析 / 设计 > 设计和计算书控制> 分析工况 😪 (命令框:ac)

- 1. 分析工况框中点击添加 按钮
- 2. 名称输入栏中输入 'LEM'
- 3. 分析方法选择栏中选择 '边坡稳定分析(LEM) '
- 4. 点击分析控制数据 🗾 按钮
- 5. 边坡方向选择 '从右向左方向'
- 6. 勾选初期水位后输入栏输入 '1',选择栏选择 '水位' 😡
- 7. 点击确认 **确**认 按钮
- 8. 点击定义分析模型> 所有层组用 按钮
- 9. 将输入的所有数据中的边界组 > '栅格 Radius'按拖拽到分析用数据
- 10. 点击 确认 确认 按钮

名称 上版 分析子 ② base ③ base ③ base ④ crug Suppert ④ crug Suppert	这
分析方: 少好程制数据 少好控制数据 少好控制数据 全 少好推模型中技術数组分析 定义分析模型 新有层组用 所有层组用 所有层组用 所有高数据 分析用数据 分析用数据 分析用数据 ○ 定型 の有高数据 分析用数据 ○ の 常能曲面 1 今 常能曲面 3 今 行能曲面 3 今 行能曲面 3 今 行能曲面 3 今 行能曲面 3 今 行能曲面 3 今 行能曲面 3 今 行動数组 ① ① ① ① ① 》 》 》 》 》 》 》 》 》 》 》 》 》	分析方法 bishop は算べ数和误差 1000 € 最大迭代次数 1000 € 条分数量 30 € 安全系数计算误差 0.01 3 日本資酬所算 ○ 从左向右方向 ③ ○
今年用模型中技需载组分析 定义分析模型 所有层组用 所有边界组用 所有应原组用 所有荷载组用 输入的所有数据 分析用数据 一 局方 一 房店 ● ● <t< th=""><th>は貧次数和課差 最大技作公数 多分数量 安全系数计算课差 0.01 6 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<>	は貧次数和課差 最大技作公数 多分数量 安全系数计算课差 0.01 6 0 0 0 0 0 0 0 0 0 0 0 0 0
所有层组用 所有边界组用 所有荷载组用 输入的所有数据 分析用数据 一 分析用数据 少 分析用数据 ● ●	取大地行ん数
新年福祉 新人的所有数据 新日本 新人的所有数据 分析用数据 分析用数据 分析用数据 の 「 新人的所有数据 の 「 新生 の の の の の の の の の の の の の の の の の の	安全系数计算误差 0.01 5 小街師原度 0.01 6 人左向右方向 从右向左方向 7 初始水位 1
Bar/Ath/ff 数据 力切开数据 ● 层组 ● Base ● 0 ● Fall ● Drag & Drop ● Fall ● 0 ● Fall ● Fall ● 0 ● Fall ● 0 ● Fall ● 0 <td< th=""><th>日本音韻琢厚度 0.01 m 送敏方荷 从左向右方向 人工的有方向 人工的有方向 ① 2 ② 2 ② 2</th></td<>	日本音韻琢厚度 0.01 m 送敏方荷 从左向右方向 人工的有方向 人工的有方向 ① 2 ② 2 ② 2
base 0 Trag & Drop 0 管能曲面 1 管能曲面 2 管能曲面 3 全 边界组 ① 动蛇油 ① Self Veight	送朱方符 ○ 从左向右方向 6 1 ○ 災位
	7)

[分析状况设定]

♀初期水位设定时选择水位 线函数的情况下,之前输 入的数字 '1'按 Scale fact or使用。

05. 分析

ailWork

Itorials

[分析状况设定]

2. 定义设计选项定义

定义要在计算书中使用的设计选项

E.

主菜单中选择 分析 / 设计 > 设计及计算书控制 > 设计选项 在主菜单中,选择 分析/设计 > 设计及计算书控制 > 设计选项

- 1. 在边坡栏中选择边坡安全系数 > '切边…
- 2. 在边坡安全系数 的 **切边坡 (干燥期时)** 输入1.5
- 3. 在边坡安 确认 边坡 (**降雨期时**) 输入1.2
- 4. 点击确认 确认 按钮

设计选项		x
辺坡		
边坡安全系数标准 1		
○ 陡边坡	💿 切边坡	
陡边坡	1.300	
切边坡(千燥期)	1.500	
切边坡(降雨期)	1.200	
	确认	取消

torials

3. 分析及计算书生成

利用设定好的分析工况,运行分析及生成计算书。

主菜单中选择 分析 / 设计 > 运行 > 分析和计算书 🛛 📝 命令框:ra)

1. 勾选'LEM', 'SRM', 'SAM', '边坡分析结果计算书'。

2. 点击执行分析 _____ 运行分析 _____ 按钮 ♀

1 分析和计算书制作管理者 🔇 名称 分析类型 ? 4 LEM 边坡稳定(LEM)分析 > > SRM 边坡稳定(SRM)分析 边坡稳定(SAM)分析 ? SAM 边坡分析结果计算书 ? 计算书 2 运行分析 取消分析 关闭

[分析 & 计算书]

●分析过程中发生的信息在 分析及计算书的执行管理 者下端部表示。特别要注 意的是发生 Warning的情况下,分析结果有可能不 正常。 对于分析的信息,按Text 文件格式化与Save文件在 统一的文件夹.OUT 文件

中存储。

Tutorials

Slope

1. 分析结果 (LEM)

确认按LEM 分析的破坏面和安全系数。

结果目录树中确认 边坡稳定 (LEM) 分析 > 圆弧破坏面

1. 确认通过LEM 分析的边坡最小安全系数。

[确认通过LEM分析的破坏圆弧和最小安全系数]

并且双击圆弧的特定切片就可以确认有关切片的详细信息,点击栅格的点就能确认所有以相关点为 原点的圆弧和它的安全系数。

在结果信息框中双击选择一个 切片

1. 通过自由体和力多边形确认相关切片的详细信息。

在结果信息框中选择栅格的一个点

 根据栅格的相关点和滑动面的组合,确认各自圆弧的安全系数,其中用红色表示的圆弧 为最小安全系数所对应的滑弧。

[栅格的一个点中可以发生的所有圆弧的安全系数确认]

♀ 强度折减系数法中发生 最大剪应变的区段根据输 入的地基特性和补强材料 配置与否可以局部性的发 生。

2. 分析结果分(SRM)

通过SRM 分析得到的最大剪应变确认预想破坏面及安全系数。

结果 目录树 中选择 边坡稳定 分析 (SRM) >岩土单元应变>最大剪应变 Qa 1. 通过最大剪应变云图r确认边坡的预想破坏面。

结果目录树中确认 **边坡稳定 分析(SRM) > 安全系数** 确认通过SRM 分析的边坡安全系数。

结果目录树中确认 边坡稳定 分析 (SRM) > 植入式桁架 > 植入式桁架轴向应变(Sx)

[SoilNail 输出]

Slope

确认按SAM 分析的破坏面和安全系数 ♀

在结果目录树中确认 边坡稳定分析(SAM)>圆弧破坏面

1. 确认通过SAM分析的边坡最小安全系数。

Slope

在结果目录树中选择 边坡稳定 分析 (SAM)> 岩土单元应变> 最大剪切应变

1. 通过最大剪应变云图确认边坡的预想破坏面。

[通过最大剪应变确认预想破坏面]

[SoilNail 输出]

○初期假定的圆弧破坏面范 围不确切的情况下,变更 网格位置重新执行分析, 基于假定的圆弧破坏面形 状,可以确认最小安全系 数和Nail的输出结果。

4. 生成计算书

分析的结果按计算书形式生成。

÷

e

在设计及计算书目录树中双击 计算书 > 边坡 > 边坡分析验算

·II. 使用特性。

•1. 地基特性。

$\boxtimes \partial e$	بة 1925). م(د^س/يتين	±11:013111 (اللله) (الله)	お旅力は、 (LLLL /m ^ 2)の	+1000000+ (2)e	30183518.↓ (\\/m^2)₽	3862.01.e	P
风化土↔	18.50+2	19.50 ₽	17.5 ₽	<mark>31.00</mark> ₽	36500₽	0.33+2	43
风化岩↩	21.00	<mark>22.00</mark> ₽	50.0 ₽	<mark>33.00</mark> ₽	150000e3	0.3+2	Þ
软岩↩	24.00+2	25.00₽	180.0+2	35.50₽	1850000+2	0.28+2	ę
风化土~	18.50+2	18.50	17.5₽	31.00₽	-0	-42	ę
风化岩┙	21.004	21.00 ¢	50.0₽	<mark>33.00</mark> ₽	-0	-43	ø
软岩↩	24.00+2	24.00₽	180.0+2	35.50₽	-9	-47	÷

•2. 支护特性。

÷

2. (se.		///≊//ant+ (0.1.0)₽	(m) स् (m) स्	(%s)∉ (%s)¢	1911-9032+ (<u>km</u> /35)@	+ 302000000 (m)@
Nail(LEM)	钉/桩(LEM)₽	2.00	1.00₽	10.00*	115.00	-0

·IV. 分析结果。

·1. 雨期。

ų,

- ب ب
- 1.1 SRM-

[边坡分析结果计算书]

utorials

本例题为对用土钉加固的边坡进行稳定性分析

在实际工程中,利用LEM进行边坡稳定分析时,最含糊的部分是对加固材料的刚性处理部分。 不考虑初始扩散宽度(diffusion width)、初始扩散角(diffusion angle)等的差异对安全系数的影响,并且对其概念也未正确理解。

LEM 分析中对加固材料进行分析时,对扩散区域相关的切片,需要考虑增加一定的强度。这时决定扩散区域的输入值正是初期扩散宽度和初期扩散角。扩散的区域如同下图按与加固材料垂直的方向设定像初始扩散宽度的区域,在初始扩散宽度中画像初期扩散角那样张开的线,找出与破坏圆弧相遇的点决定扩散区域(下图划斜线的区域)。过小的设定初始扩散角的情况下,扩散区域的强度增加几乎不会对安全系数带来影响。所以初始扩散宽度一般使用相当于地压板大小的1.0m或2.0m、初期扩散角一般取值为10~20度。

[通过初期扩散幅度和初期扩散角的扩散区域设定]

utorials